Main Article Content

Abstract

Hypericum perforatum, H. umbellatum, H. maculatum, and H. hircinum accessions originating from botanical gardens across Europe were examined by flow cytometry and molecular markers. 2C DNA content of 17 Hypericum perforatum accessions (Hp) and the H. perforatum cultivar Topaz amounted between 1.56 pg and 1.62 pg. In four Hp accessions few individual plants were found with a DNA content corresponding to 6Cx (2.34 - 2.39 pg). All plants of accession Hp8 showed a DNA content of 6Cx (2.41 pg). In root tips of Hp plants with an average DNA amount of 1.58 pg, 32 chromosomes were detected corresponding to 2n = 4x. H. umbellatum and H. maculatum, each contained 0.76 pg DNA and 16 chromosomes were counted. The 2C DNA content of H. hircinum is described for the first time and is 1.00 pg. Additionally, a combined marker analysis, based on inter-simple sequence repeats (ISSR) and sequence related amplified polymorphism (SRAP), was conducted to gain a better understanding of diversity especially within the accessions of H. perforatum. A total of 27 (11 ISSR and 16 SRAP) markers were screened, showing 699 bands of which 661 were polymorphic. UPGMA clustering revealed that accessions from the same geographic area tended to be more closely related, while H. maculatum was grouped separately from all H. perforatum accessions. Both methods have shown similar sensitivities in detecting the genetic diversity of the analyzed genotypes. Our results may be useful for Hypericum breeding programs and the development of effective conservation strategies.

Keywords

chromosome number DNA genetic diversity molecular markers St. John’s wort

Article Details

How to Cite
Butiuc Keul, A., Coste, A., Budahn, H., Dunemann, F., Farkas, A., Postolache, D., & Klocke, E. (2022). Analysis of Hypericum accessions by DNA fingerprinting and flow cytometry. Acta Botanica Croatica, 81(1), 1–11. https://doi.org/10.37427/botcro-2021-026

References

Read More

Similar Articles

<< < 5 6 7 8 9 10 11 12 13 14 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)