Main Article Content

Abstract

The salinity of the soil and irrigation water is one of the great challenges of agriculture. Salinity can have harmful effects on physiological processes and plant growth, including Tropaeolum majus L. (Tropaeolaceae). The application of phytohormones can be a strategy to mitigate these effects. The aim of this study was to evaluate the application of jasmonic acid, salicylic acid, cytokinin and polyamine as attenuators of salt stress in T. majus. Three levels of salt stress were used: 0 mM NaCl (no stress), 50 mM NaCl (moderate stress) and 100 mM NaCl (severe stress). Four phytohormones and a control treatment were used: control (deionized water), jasmonic acid (200 µM), salicylic acid (2 mM), cytokinin (6-benzylaminopurine – 10 µM) and polyamine (spermine – 1 mM). Growth and gas exchange parameters were evaluated. Applied in conditions of moderate salt stress, all the phytohormones were efficient in improving plant height and leaf area (except salicylic acid); cytokinin and polyamine improved the number of flowers as well as gs, A and iCE; jasmonic acid improved the stem dry mass and total dry mass. In relation to severe salt stress, applications of jasmonic acid and polyamine were efficient in improving plant height; cytokinin improved leaf dry mass as well as gs, A, E, WUE, iWUE and iCE. The application of cytokinin, polyamine and jasmonic acid can be used to mitigate moderate salt stress in T. majus.

Keywords

growth abiotic stress edible flowers gas exchange

Article Details

How to Cite
da Silva, T. I., Dias, M. G., Grossi, J. A. S., Ribeiro, W. S., de Moraes, P. J., de Araújo, F. F., & Barbosa, J. G. (2022). Application of phytohormones as attenuators of salt stress in Tropaeolum majus L. (Tropaeolaceae). Acta Botanica Croatica, 81(1), 51–60. https://doi.org/10.37427/botcro-2022-001

References

  1. Avalbaev, A., Yuldashev, R., Fedorova, K., Somov, K., Vysotskaya, L., Allagulova, C., Shakirova, F., 2016: Exogenous methyl jasmonate regulates cytokinin content by modulating cytokinin oxidase activity in wheat seedlings under salinity. Journal of Plant Physiology 191, 101–110.
  2. Baniasadi, F., Saffari, V.R., Moud, A.A.M., 2018: Physiological and growth responses of Calendula officinalis L. plants to the interaction effects of polyamines and salt stress. Scientia Horticulturae 234, 312–317.
  3. Bielach, A., Hrtyan, M., Tognetti, V.B., 2017: Plants under stress: Involvement of auxin and cytokinin. International Journal of Molecular Sciences 18(7), 1427.
  4. Bloem, E., Haneklaus, S., Kleinwächter, M., Paulsen, J., Schnug, E., Selmar, D., 2014: Stress-induced changes of bioactive compounds in Tropaeolum majus L. Industrial Crops and Products 60, 349–359.
  5. Bosco, R., Daeseleire, E., Van Pamel, E., Scariot, V., Leus, L., 2014: Development of an ultrahigh-performance liquid chromatography–electrospray ionization–tandem mass spectrometry method for the simultaneous determination of salicylic acid, jasmonic acid, and abscisic acid in rose leaves. Journal of Agricultural and Food Chemistry 62(27), 6278–6284.
  6. Chang, Z., Liu, Y., Dong, H., Teng, K., Han, L., Zhang, X., 2016: Effects of cytokinin and nitrogen on drought tolerance of creeping bentgrass. PloS One 11(4), e0154005.
  7. Dar, T.A., Uddin, M., Khan, M. M. A., Hakeem, K.R., Jaleel, H. 2015: Jasmonates counter plant stress: a review. Environmental and Experimental Botany 115, 49–57.
  8. El-Esawi, M.A., Elansary, H.O., El-Shanhorey, N.A., Abdel-Hamid, A.M., Ali, H.M., Elshikh, M.S., 2017: Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology 8, 716.
  9. Farhangi-Abriz, S., Ghassemi-Golezani, K., 2018: How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicology and Environmental Safety 147, 1010–1016.
  10. Fariduddin, Q., Mir, B.A., Yusuf, M., Ahmad, A., 2013: Comparative roles of brassinosteroids and polyamines in salt stress tolerance. Acta Physiologiae Plantarum 35(7), 2037–2053.
  11. Feng, Z., Ding, C., Li, W., Wang, Cui, D., 2020: Applications of metabolomics in the research of soybean plant under abiotic stress. Food Chemistry 310, 125914.
  12. Ferreira, E.B., Cavalcanti, P.P., Nogueira, D.A., 2018: ExpDes: Experimental Designs. R package version 1.2.0.
  13. Figueiredo, F.R.A., Nóbrega, J.S., Fátima, R.T., Silva, T.I., Nascimento, R.G.D.S., Lopes, M.F.Q., Dias, T.J.; Bruno, R.L.A., 2021: Plant development, gas exchanges and pigments of Mesosphaerum suaveolens submitted to osmoconditioning and saline stress. Acta Botanica Croatica 80(1), 29–34.
  14. Flores, M.S., Paschoalete, W.M., Baio, F.H.R., Campos, C.N.S., Pantaleão, A.A., Teodoro, L.P.R., Silva Júnior, C.A., Teodoro, P.E., 2020: Relationship between vegetation indices and agronomic performance of maize varieties under different nitrogen rates. Bioscience Journal 36(5), 1638–1644.
  15. Forni, C., Duca, D., Glick, B.R., 2017: Mechanisms of plant response to salt and drought stress and their alteration by rhizobacteria. Plant and Soil 410(1-2), 335–356.
  16. Friendly, M., Fox, J., 2017: Candisc: visualizing generalized canonical discriminant and canonical correlation analysis. R package version 0.8-0.
  17. Fu, X.Z., Huang, Y., Xing, F., Chun, C.P., Ling, L.L., Cao, L., Peng, L.Z., 2016: Changes in free polyamines and expression of polyamine metabolic genes under drought and high-temperature in Citrus sinensis. Biologia Plantarum 60(4), 793–798.
  18. Ghalati, R.E., Shamili, M., Homaei, A., 2019: Guava (Psidium guajava L.) leaf protease activity enriched by controlled-stress and putrescine application. Scientia Horticulturae 248, 105–111.
  19. Gomez-Jimenez, M.C., Paredes, M.A., Gallardo, M., Fernandez-Garcia, N., Olmos, E., Sanchez-Calle, I.M., 2010: Tissue-specific expression of olive S-adenosyl methionine decarboxylase and spermidine synthase genes and polyamine metabolism during flower opening and early fruit development. Planta 232(3), 629–647.
  20. Gupta, B., Huang, B., 2014: Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics 2014, 701596.
  21. Gupta, K., Dey, A., Gupta, B., 2013: Plant polyamines in abiotic stress responses. Acta Physiologiae Plantarum 35(7), 2015–2036.
  22. He, M., He, C.Q., Ding, N.Z., 2018: Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Frontiers in Plant Science 9, 1771.
  23. Hönig, M., Plíhalová, L., Husičková, A., Nisler, J., Doležal, K., 2018: Role of cytokinins in senescence, antioxidant defence and photosynthesis. International Journal of Molecular Sciences 19(12), 4045.
  24. Ibrahim, E. A., 2016: Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology 192, 38–46.
  25. Ilangumaran, G., Smith, D.L., 2017: Plant growth promoting rhizobacteria in amelioration of salinity stress: a systems biology perspective. Frontiers in Plant Science 8, 1768.
  26. Kumar, A., Verma, J.P., 2018: Does plant-microbe interaction confer stress tolerance in plants: a review? Microbiological Research 207, 41–52.
  27. Liu, J.H., Wang, W., Wu, H., Gong, X., Moriguchi, T., 2015: Polyamines function in stress tolerance: from synthesis to regulation. Frontiers in Plant Science 6, 827.
  28. Liu, L., Li, H., Zeng, H., Cai, Q., Zhou, X., Yin, C., 2016: Exogenous jasmonic acid and cytokinin antagonistically regulate rice flag leaf senescence by mediating chlorophyll degradation, membrane deterioration, and senescence-associated genes expression. Journal of Plant Growth Regulation 35(2), 366–376.
  29. Lutts, S., Hausman, J.F., Quinet, M., Lefèvre, I., 2013: Polyamines and their roles in the alleviation of ion toxicities in plants. Eds. Ahmad, P., Azooz, M. M., Prasad, M. N. V. In: Ecophysiology and responses of plants under salt stress, 315–353. Springer, New York.
  30. Melo, A.C., Costa, S.C.A., Castro, A.F., Souza, A.N.V., Sato, S.W., Lívero, F.A.R., Lourenço, E.L.B., Baretta, I.P., Lovato, E.C.W., 2018: Hydroethanolic extract of Tropaeolum majus promotes anxiolytic effects on rats. Revista Brasileira de Farmacognosia 28(5), 589–593.
  31. Mur, L.A., Prats, E., Pierre, S., Hall, M.A., Hebelstrup, K.H., 2013: Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Frontiers in Plant Science 4, 215.
  32. Negrão, S., Schmöckel, S.M., Tester, M., 2017: Evaluating physiological responses of plants to salinity stress. Annals of Botany 119(1), 1–11.
  33. Nxele, X., Klein, A., Ndimba, B.K., 2017: Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany 108, 261–266.
  34. Ogweno, J.O., Hu, W.H., Song, X.S., Shi, K., Mao, W.H., Zhou, Y.H., Yu, J.Q., 2010: Photoinhibition-induced reduction in photosynthesis is alleviated by abscisic acid, cytokinin and brassinosteroid in detached tomato leaves. Plant Growth Regulation 60(3), 175–182.
  35. Pál, M., Szalai, G., Janda, T., 2015: Speculation: polyamines are important in abiotic stress signaling. Plant Science 237, 16–23.
  36. Phour, M., Sindhu, S.S., 2020: Amelioration of salinity stress and growth stimulation of mustard (Brassica juncea L.) by salt-tolerant Pseudomonas species. Applied Soil Ecology 149, 103518.
  37. Qiu, Z., Guo, J., Zhu, A., Zhang, L., Zhang, M., 2014: Exogenous jasmonic acid can enhance tolerance of wheat seedlings to salt stress. Ecotoxicology and Environmental Safety 104, 202–208.
  38. R Core Team, 2020: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
  39. Rop, O., Mlcek, J., Jurikova, T., Neugebauerova, J., Vabkova, J., 2012: Edible flowers- a new promising source of mineral elements in human nutrition. Molecules 17(6), 6672–6683.
  40. Schäfer, M., Meza‐Canales, I.D., Navarro‐Quezada, A., Brütting, C., Vanková, R., Baldwin, I.T., Meldau, S., 2015: Cytokinin levels and signaling respond to wounding and the perception of herbivore elicitors in Nicotiana attenuata. Journal of Integrative Plant Biology 57(2), 198–212.
  41. Silva, T.I., Nóbrega, J.S., Figueiredo, F.R.A., Sousa, L.V., Ribeiro, J.E.S., Bruno, R.D. L.A., Dias, T.J., Albuquerque, M.B., 2018: Ocimum basilicum L. seeds quality as submitted to saline stress and salicylic acid. Journal of Agricultural Science 10(5), 159–166.
  42. Talla, S.K., Panigrahy, M., Kappara, S., Nirosha, P., Neelamraju, S., Ramanan, R., 2016: Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. Journal of Experimental Botany 67(6), 1839–1851.
  43. Tang, G., Ma, J., Hause, B., Nick, P., Riemann, M., 2020: Jasmonate is required for the response to osmotic stress in rice. Environmental and Experimental Botany 175, 104047.
  44. Tavallali, V., Karimi, S., 2019: Methyl jasmonate enhances salt tolerance of almond rootstocks by regulating endogenous phytohormones, antioxidant activity and gas-exchange. Journal of Plant Physiology 234, 98–105.
  45. Wang, C., Teng, Y., Zhu, S., Zhang, L., Liu, X., 2019: NaCl-and cold-induced stress activate different Ca2+- permeable channels in Arabidopsis thaliana. Plant Growth Regulation 87(2), 217–225.
  46. Wei, T., Simko, V., 2017: R package "corrplot": visualization of a correlation matrix. (Version 0.84). Volume R package.
  47. Wu, X., He, J., Chen, J., Yang, S., Zha, D., 2014: Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Protoplasma 251(1), 169–176.
  48. Xiaotao, D., Yuping, J., Hong, W., Haijun, J., Hongmei, Z., Chunhong, C., Jizhu, Y., 2013: Effects of cytokinin on photosynthetic gas exchange, chlorophyll fluorescence parameters, antioxidative system and carbohydrate accumulation in cucumber (Cucumis sativus L.) under low light. Acta Physiologiae Plantarum 35(5), 1427–1438.
  49. Xu, W., Lu, N., Kikuchi, M., Takagaki, M., 2021: Effects of node position and electric conductivity of nutrient solution on adventitious rooting of nasturtium (Tropaeolum majus L.) cuttings. Agronomy 11(2), 363.

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.